if secA +tanA=x then prove sinA=(x2-1)/(x2+1)
Answers
Answered by
4
As we know that 1 + tan²A = sec ²A
sec²A - tan²A = 1
(secA + tan A) (secA - tanA) = 1
(secA - tanA) = 1/(secA + tanA)
secA - tanA = 1/x ( As given secA + tanA = x )
Now adding
(secA + tanA ) + ( secA - tanA) = x + 1/x
2secA = (x² + 1) /x
1/cosA = (x²+1)/2x ( As we know that secA = 1/cosA )
cosA = 2x/(x² + 1)
Cos²A = 4x²/(x² + 1)²
1 - cos²A = 1 - 4x²/(x² + 1)²
sin²A = (x² + 1 )² - 4x²/(x² + 1)² (sin²A + cos²A = 1)
sin²A = [(x²)² + 2x² + 1 -4x²]/(x² + 1)
sin²A = [(x²)² - 2x² + 1]/(x² +1)²
sinA = √(x² - 1)² / √(x² + 1)²
sinA = (x² - 1)/ (x² + 1)
Hence proved.
Answer by Syed G.M Ibrahim
sec²A - tan²A = 1
(secA + tan A) (secA - tanA) = 1
(secA - tanA) = 1/(secA + tanA)
secA - tanA = 1/x ( As given secA + tanA = x )
Now adding
(secA + tanA ) + ( secA - tanA) = x + 1/x
2secA = (x² + 1) /x
1/cosA = (x²+1)/2x ( As we know that secA = 1/cosA )
cosA = 2x/(x² + 1)
Cos²A = 4x²/(x² + 1)²
1 - cos²A = 1 - 4x²/(x² + 1)²
sin²A = (x² + 1 )² - 4x²/(x² + 1)² (sin²A + cos²A = 1)
sin²A = [(x²)² + 2x² + 1 -4x²]/(x² + 1)
sin²A = [(x²)² - 2x² + 1]/(x² +1)²
sinA = √(x² - 1)² / √(x² + 1)²
sinA = (x² - 1)/ (x² + 1)
Hence proved.
Answer by Syed G.M Ibrahim
Answered by
2
Answer:
Step-by-step explanation:
Attachments:
Similar questions