If secA + tanA = x ,then sec^2 A=?.
Give the following answer in terms of x.
Please answer this question in a proper explaination!!
Answers
Step-by-step explanation:
hey here is your answer
pls mark it as brainliest
Step-by-step explanation:
mark it as brainliest
\begin{gathered}so \: here \: \\ secA + tanA =x \\ ie \: tan \: A = x - sec \: A\end{gathered}
sohere
secA+tanA=x
ietanA=x−secA
\begin{gathered}so \: now \: using \\ 1 + tan ^{2} A = sec {}^{2} A \\ 1 + (x - sec \: A) {}^{2} = sec {}^{2} A \\ 1 + x {}^{2} + sec {}^{2} A - 2sec \: A.x = sec {}^{2} A \\ 1 + x {}^{2} - 2sec \: A.x = 0 \\ ie \: 1 + x {}^{2} = 2secA.x \\ sec \: A = 1 + x {}^{2} /2x \\ \\ \end{gathered}
sonowusing
1+tan
2
A=sec
2
A
1+(x−secA)
2
=sec
2
A
1+x
2
+sec
2
A−2secA.x=sec
2
A
1+x
2
−2secA.x=0
ie1+x
2
=2secA.x
secA=1+x
2
/2x
\begin{gathered}thus \: value \: of \: sec \: A \: (in \: terms \: of \: x) \: is \: 1 + x {}^{2} /2x \\ \end{gathered}