If secA + tanA = x then secA =
Answers
if secA + tanA = x then
Given,
secA + tanA = x
To Find,
secA = ?
Solution,
To find secA,
Let us consider
secA + tanA = x -----> eq 1
From the identity,
,
(secA+tanA) (secA-tanA) = 1
secA-tanA = 1/ secA-tanA
substituting from eq 1,
secA-tanA = 1/ x -----> eq 2
Adding eq 1 and 2,
we get,
2secA =x + 1/x
Therefore if secA + tanA = x then
#SPJ3
if secA + tanA = x then \begin{gathered}secA = \frac{x^{2}+1 }{2x} \\\end{gathered}
secA=
2x
x
2
+1
Given,
secA + tanA = x
To Find,
secA = ?
Solution,
To find secA,
Let us consider
secA + tanA = x -----> eq 1
From the identity,
\begin{gathered}sec^{2}A- tan^{2} A = 1\\\end{gathered}
sec
2
A−tan
2
A=1
,
(secA+tanA) (secA-tanA) = 1
secA-tanA = 1/ secA-tanA
substituting from eq 1,
secA-tanA = 1/ x -----> eq 2
Adding eq 1 and 2,
we get,
2secA =x + 1/x
\begin{gathered}2secA = \frac{x^{2}+1 }{x} \\secA = \frac{x^{2}+1 }{2x} \\\end{gathered}
2secA=
x
x
2
+1
secA=
2x
x
2
+1
Therefore if secA + tanA = x then \begin{gathered}secA = \frac{x^{2}+1 }{2x} \\\end{gathered}
secA=
2x
x
2
+1