Math, asked by rocky565, 1 year ago

if secant theta + tan theta equal to P find the value of cosec and theta
 \sqrt{8}

Answers

Answered by srivastavakhushi
0
 \huge{ \boxed{HEYA}}

 \sec( \theta) + \tan( \theta) = p
 sec( \theta) - \tan( \theta) = \frac{1}{p}
2 \sec( \theta) = p + \frac{1}{p}
 \sec( \theta) = \frac{p {}^{2} + 1}{2p}
 \cos( \theta) = \frac{1}{ \sec( \theta) }
 \cos( \theta) = \frac{2p}{p {}^{2} + 1 }

similarly,
 \tan( \theta) = \frac{p {}^{2} - 1 }{2p}

 \sin( \theta) = \tan( \theta) \times \cos( \theta)
 \sin( \theta) = \frac{2p}{p {}^{2} + 1 } \times \frac{p {}^{2} - 1}{2p}
 \sin( \theta) = \frac{p {}^{2} - 1 }{p {}^{2} + 1}
so,
 \csc( \theta) = \frac{p {}^{2} + 1 }{p {}^{2} - 1 }

 \huge{ \boxed{thanks}}
Similar questions