If secant theta + tan theta is equal to p then prove that sin theta is equal to p square minus 1 by p square + 1
Answers
Answered by
5
given : secθ + tanθ = p ----(1)
we know that sec²θ-tan²θ = 1
(secθ-tanθ) (secθ-tanθ) = 1
p (secθ-tanθ) = 1
secθ-tanθ = 1/p ----(2)
Adding ---(1) and ------(2) we get,
2 secθ = p²+1 / p -----(3)
EQUATION (1) - (2)
2tanθ = p²-1 / p ---(4)
EQUATION 3/4
2 secθ/ 2tanθ = p²+1/p / p²-1/p
secθ/tanθ = p²+1 / p²-1
1/cosθ / sinθ/cosθ = p²+1/ p²-1
1/sinθ = p²+1/ p²-1
sinθ = p²-1 / p²+1
HENCE PROVED !!
Similar questions
Math,
7 months ago
English,
7 months ago
Math,
1 year ago
Chemistry,
1 year ago
Social Sciences,
1 year ago