Math, asked by aayushgupta0909, 11 months ago

If seco = 13/5, find the value of 2sin +3 cos / 5cos 0 - 4 sin :​

Answers

Answered by Anonymous
4

Solution

sec=13/5

=>cos=5/13

now.....

sin=(1-(5/13)²)=12/13

therefore

=(2sin∅ +3 cos∅ )/( 5cos ∅- 4 sin∅ )

=[2(12/13)+3(5/13)]/[5(5/13)-4(12/13)]

=(39/13)/(-23/13)

=-(39/23)

Answered by kaushik05
10

Given

 \sec( \alpha )  =  \frac{13}{5}

We know 1/sec@=cos@ then

 \cos( \alpha )  =  \frac{5}{13}

Also

 \sin( \alpha )  =  \sqrt{1 -  { \cos(  \alpha ) }^{2} }  \\  =  >  \sqrt{1 -  {( \frac{5}{13}) }^{2} }  \\  =  >  \sqrt{ \frac{169 - 25}{169} }  \\  =  >  \sqrt{ \frac{144}{169} }  \\  =  >  \frac{12}{13}

To find

 \frac{2 \sin( \alpha ) + 3 \cos( \alpha )  }{5 \cos( \alpha ) - 4 \sin( \alpha )  }

put the value of sin@ and cos @

 =  > \frac{2( \frac{12}{13})  + 3( \frac{5}{13}) }{5( \frac{5}{13}) - 4( \frac{12}{13})  }  \\  =  > \frac{ (\frac{24}{13} +  \frac{15}{13})  }{( \frac{25}{13} -  \frac{48}{13}  )}  \\  =  >  \frac{( \frac{39}{13}) }{ ( \frac{ - 23}{13} )}

13 gets cancel out then,

= > -(39/23)

Similar questions