Math, asked by ravirani522, 1 year ago

If
seco + Coso = 2
Prove Sec100o+cos100o = 2​

Answers

Answered by A1111
1

Let's take the angle as alpha for clarity purposes.

  =  > \sec( \alpha )  +  \cos( \alpha )  = 2 \\  =  >  \frac{1}{ \cos( \alpha ) }  +  \cos( \alpha )  = 2 \\  =  >  \frac{1 +  \cos^{2} ( \alpha ) }{ \cos( \alpha ) }  = 2 \\  =  >   \cos^{2} ( \alpha )  - 2 \cos( \alpha )  + 1 = 0  \\  =  > ( \cos( \alpha )  - 1)^{2}  = 0 \\  =  >  \cos( \alpha )  = 1 \\  =  >  \alpha  = 2n\pi, \:  \:  where \: n \:  is \:  an \: integer \\

If we take the principal value of cosine then,

 \alpha  = 0

Now,

 \sec(100 \alpha )  +  \cos(100 \alpha )   =  \sec(0)  +  \cos(0)  = 1 + 1 = 2

- Q.E.D.

Hope, it'll help you.....

Similar questions