if secO+tanO=p , then prove that sinO = p2-1/p2+1
Answers
Answered by
29
Answer:
secA+tanA=p -------(1)
We know that,
sec²A - tan²A = 1
(secA + tanA )(secA - tanA) = 1
p(secA - tanA) = 1
secA - tanA = 1/p ------------(2)
Adding (1) and (2) we get,
2secA = p+1/p
secA = (p²+1)/2p
cosA = 1/secA = 2p/(p²+1)
sinA = √(1-cos²A)
=√{1-4p²/(p²+1)²
=√{(p²+1)²-4p²}/(p²+1)²
=√(p⁴+2p²+1-4p²)/(p²+1)
=√(p²-1)²/(p²+1)
=(p²-1)/(p²+1)
Hence proved
HOPE THAT IT WAS HELPFUL!!!!
MARK IT THE BRAINLIEST IF IT REALLY WAS!!!!
Similar questions