Math, asked by afrinshaik66, 4 months ago

if secø+tanø=p, then what is the value of secø-tanø? ​

Answers

Answered by suhail2070
0

Answer:

 \sec( \alpha )  -  \tan( \alpha )  =  \frac{1}{p}

Step-by-step explanation:

p =  \frac{ \sec( \alpha ) +  \tan( \alpha )  }{1}  \\  \\  \frac{1}{p}  =   \frac{1}{ \sec( \alpha ) +  \tan( \alpha )  }   \\  \\  \frac{1}{p}  =  \frac{1}{ \sec( \alpha ) +  \tan( \alpha )  }  \times  \frac{ \sec( \alpha )  -  \tan( \alpha ) }{sec( \alpha )  -  \tan( \alpha )}  \\  \\  \frac{1}{p}  =  \frac{ \sec( \alpha )  -  \tan( \alpha ) }{ { \sec( \alpha ) }^{2}  -  { \tan( \alpha ) }^{2} }  \\  \\  \frac{1}{p}  =  \sec( \alpha )  -  \tan( \alpha )  \\  \\  \\ therefore \:  \:  \:  \:  \:  \sec( \alpha )  -  \tan( \alpha )  =  \frac{1}{p}

Similar questions