If secQ=5/4, Find the value of
SinQ-2CosQ/TanQ-CotQ
Answers
Given :-
- secQ = (5/4)
To Find :-
- (SinQ - 2CosQ) /(TanQ - CotQ)
Formula used :-
- sin theta = Perpendicular/Hypotenuse
- cos theta = Base/Hypotenuse
- tan theta = Perpendicular/Base
- cosec theta = Hypotenuse/Perpendicular
- sec theta = Hypotenuse/Base
- cot theta = Base/Perpendicular
Solution :-
→ secQ = (5/4) = Hypotenuse/Base
So,
→ Hypotenuse = 5
→ Base = 4
So, By Pythagoras Theoram ,
→ Perpendicular = √(5)² - (4)²
→ Perpendicular = √(25 - 16)
→ Perpendicular = √9
→ Perpendicular = 3 .
_______________
So,
→ SinQ = Perpendicular/Hypotenuse = 3/5
→ cosQ = Base/Hypotenuse = 4/5
→ TanQ = Perpendicular/Base = 3/4
→ CotQ = Base/Perpendicular = 4/3
________________
Putting All Values now, we get :-
→ (SinQ - 2CosQ) /(TanQ - CotQ)
→ [ (3/5) - 2*(4/5) ] / [ (3/4) - (4/3) ]
→ [ (3- 8)/(5) ] [ ( 9 - 16) / (12) ]
→ (-5/5) / (-7/12)
→ (-1) * (-12/7)
→ (12/7) (Ans).
Answer:
given:
secQ=5/4
we know that secQ=H/B
by Pythagoras theoram
=>(Hypotenuse)²=(Base)²+(perpendicular)²
=>(5)²=(4)²+(p)²
=>25=16+(p)²
=>25-16=(p)²
=>9=(p)²
=>p=√9
=>p=3
Now,
SinQ=p/h =3/5
CosQ=b/h=4/5
TanQ=p/b=3/4
CotQ=b/p=4/3
Now put the value of these in the given equation,