Math, asked by ritikaverenkar, 11 months ago

If secQ=5/4, Find the value of
SinQ-2CosQ/TanQ-CotQ

Answers

Answered by RvChaudharY50
74

Given :-

  • secQ = (5/4)

To Find :-

  • (SinQ - 2CosQ) /(TanQ - CotQ)

Formula used :-

  • sin theta = Perpendicular/Hypotenuse
  • cos theta = Base/Hypotenuse
  • tan theta = Perpendicular/Base
  • cosec theta = Hypotenuse/Perpendicular
  • sec theta = Hypotenuse/Base
  • cot theta = Base/Perpendicular

Solution :-

secQ = (5/4) = Hypotenuse/Base

So,

Hypotenuse = 5

→ Base = 4

So, By Pythagoras Theoram ,

Perpendicular = √(5)² - (4)²

→ Perpendicular = √(25 - 16)

→ Perpendicular = √9

→ Perpendicular = 3 .

_______________

So,

→ SinQ = Perpendicular/Hypotenuse = 3/5

→ cosQ = Base/Hypotenuse = 4/5

→ TanQ = Perpendicular/Base = 3/4

→ CotQ = Base/Perpendicular = 4/3

________________

Putting All Values now, we get :-

(SinQ - 2CosQ) /(TanQ - CotQ)

→ [ (3/5) - 2*(4/5) ] / [ (3/4) - (4/3) ]

→ [ (3- 8)/(5) ] [ ( 9 - 16) / (12) ]

→ (-5/5) / (-7/12)

→ (-1) * (-12/7)

→ (12/7) (Ans).

Answered by Anonymous
43

Answer:

given:

secQ=5/4

we know that secQ=H/B

by Pythagoras theoram

=>(Hypotenuse)²=(Base)²+(perpendicular)²

=>(5)²=(4)²+(p)²

=>25=16+(p)²

=>25-16=(p)²

=>9=(p)²

=>p=√9

=>p=3

Now,

SinQ=p/h =3/5

CosQ=b/h=4/5

TanQ=p/b=3/4

CotQ=b/p=4/3

Now put the value of these in the given equation,

  \implies\frac{sinq - 2cosq}{tanq - cotq}   \\  \\  \implies \:  \frac{ \frac{3}{5 }  - 2  \times \frac{4}{5} }{ \frac{3}{4}  -  \frac{4}{3} }   \\  \\  \implies \: \frac{ \frac{3}{5}  -  \frac{8}{5} }{ \frac{9 - 16}{12} }  \\  \\  \implies \frac{ - 5}{5}  \times  \frac{12}{ - 7}  \\  \\  \implies \:  \frac{12}{7}

Similar questions