if secQ + TanQ = p then find the value cosecQ
Answers
Answered by
1
Step-by-step explanation:
Since ,
sec^2 Q - tan^2Q=1
→(sec Q+ tanQ)(secQ-tanQ)=1
→secQ- tanQ=1/p
Now , secQ+tanQ=p
Solving the equations we get ,
secQ=(1+p^2)/2p
and ,
tan Q=(p^2-1)/2p
Now , cosecQ= secQ/tanQ=(p^2+1)/(p2-1)
Answered by
0
Answer:
→ ( p^2 + 1) / ( p^2 - 1 )
Step by step explanation →
We will solve this question using some trigonometric identities .
We know sec²x - tan²x = 1
so, sec²Q - tan²Q = 1
or, (secQ - tanQ)(secQ - tanQ) = 1
or, (secQ - tanQ) = 1/(secQ + tanQ) = 1/P
now, solve equations ; secQ + tanQ = P and secQ - tanQ = 1/P
e.g., (secQ - tanQ) + (secQ + tanQ) = p + 1/p
2secQ = (p² + 1)/p
secQ = (p² + 1)/2p
cosQ = 2p/(p² + 1) = base/hypotenuse
perpendicular =
= ±(p² - 1)
so, cosecQ = hypotenuse/perpendicular
= ± (p² + 1)/(p² - 1)
Similar questions