Math, asked by tripti53, 1 year ago

If secQ + tanQ = p then find the value of cosecQ​

Answers

Answered by jarpana2003
5

Answer:

Step-by-step explanation:

Answer:secA+tanA=p ----------------------------(1)

∵, sec²A-tan²A=1

or, (secA+tanA)(secA-tanA)=1

or, secA-tanA=1/p -----------------------(2)

Subtracting (2) from (1) we get,

2tanA=p-1/p

or, tanA=(p²-1)/2p

∴, cotA=2p/(p²-1)

Now, cosec²A-cot²A=1

or, cosec²A=1+cot²A

or, cosec²A=1+{2p/(p²-1)}²

or, cosec²A=1+4p²/(p²-1)²

or, cosec²A=(p⁴-2p²+1+4p²)/(p²-1)²

or, cosec²A=(p⁴+2p²+1)/(p²-1)²

or, cosec²A=(p²+1)²/(p²-1)²

or, cosecA=(p²+1)/(p²-1)


jarpana2003: thank you soo much
jarpana2003: pls click to the thanks
Answered by mittalkalpana26
2

Answer:

Step-by-step explanation:

Sec + tan = p

1/cos + sin/cos = p

(1+sin)/cos = p

1 + sin = pcos

Sin = p cos - 1

1/sin = 1/(p cos - 1 ) me

Similar questions