Math, asked by aastha44, 1 year ago

if secQ+tanQ=p then prove that sinQ=p2-1/p2+1

Answers

Answered by AJAYMAHICH
21
SecQ + TanQ = P

=> (1/CosQ) + (SinQ/CosQ) = P

=> (1+SinQ)/CosQ = P

=> [ (1+SinQ)/CosQ ]2 = P2 [Squaring both sides]

=> (1+SinQ)2 / Cos2Q = P2

=> (1+SinQ)2 / (1-Sin2Q) = P2

=> (1+SinQ)2 / [(1+SinQ)(1-SinQ)] = P2

=> (1+SinQ) / (1-SinQ) = P2

=> 1+SinQ = P2(1-SinQ)

=> 1+SinQ = P2 - P2SinQ

=> SinQ + P2SinQ = P2 - 1

=> SinQ(1+P2) = P2-1

=> SinQ = (P2-1)/(1+P2)

=> SinQ = (P2-1)/(P2+1)

Answered by Messi71
6
This is your answer correct
Attachments:
Similar questions