if secQ+tanQ=p then prove that sinQ=p2-1/p2+1
Answers
Answered by
21
SecQ + TanQ = P
=> (1/CosQ) + (SinQ/CosQ) = P
=> (1+SinQ)/CosQ = P
=> [ (1+SinQ)/CosQ ]2 = P2 [Squaring both sides]
=> (1+SinQ)2 / Cos2Q = P2
=> (1+SinQ)2 / (1-Sin2Q) = P2
=> (1+SinQ)2 / [(1+SinQ)(1-SinQ)] = P2
=> (1+SinQ) / (1-SinQ) = P2
=> 1+SinQ = P2(1-SinQ)
=> 1+SinQ = P2 - P2SinQ
=> SinQ + P2SinQ = P2 - 1
=> SinQ(1+P2) = P2-1
=> SinQ = (P2-1)/(1+P2)
=> SinQ = (P2-1)/(P2+1)
=> (1/CosQ) + (SinQ/CosQ) = P
=> (1+SinQ)/CosQ = P
=> [ (1+SinQ)/CosQ ]2 = P2 [Squaring both sides]
=> (1+SinQ)2 / Cos2Q = P2
=> (1+SinQ)2 / (1-Sin2Q) = P2
=> (1+SinQ)2 / [(1+SinQ)(1-SinQ)] = P2
=> (1+SinQ) / (1-SinQ) = P2
=> 1+SinQ = P2(1-SinQ)
=> 1+SinQ = P2 - P2SinQ
=> SinQ + P2SinQ = P2 - 1
=> SinQ(1+P2) = P2-1
=> SinQ = (P2-1)/(1+P2)
=> SinQ = (P2-1)/(P2+1)
Answered by
6
This is your answer correct
Attachments:
Similar questions