If sectheta - tan theta =root 2tan theta then show that sectheta +tan theta =root 2sec theta
Answers
Answered by
3
secΘ-tanΘ=√2 tanΘ {Given}
On squaring,
(secΘ-tanΘ)^2=(√2 tanΘ)^2
sec^2Θ+tan^2Θ-2secΘtanΘ=2tan^2Θ
-2secΘtanΘ=2tan^2Θ-sec^2Θ-tan^2Θ
-2secΘtanΘ=tan^2Θ-sec^2Θ
-2secΘtanΘ= -1 {Because 1+tan^2Θ=sec^2Θ}
2secΘtanΘ= 1 →1
To prove secΘ+tanΘ=√2 secΘ
LHS
secΘ+tanΘ
On squaring,
(secΘ+tanΘ)^2
sec^2Θ+tan^2Θ+2tanΘsecΘ
sec^2Θ+tan^2Θ+1 {Because 1+tan^2Θ=sec^2Θ}
sec^2Θ+sec^2Θ
2sec^2Θ
On rooting,
√2 secΘ
Therefore secΘ+tanΘ=√2 secΘ
On squaring,
(secΘ-tanΘ)^2=(√2 tanΘ)^2
sec^2Θ+tan^2Θ-2secΘtanΘ=2tan^2Θ
-2secΘtanΘ=2tan^2Θ-sec^2Θ-tan^2Θ
-2secΘtanΘ=tan^2Θ-sec^2Θ
-2secΘtanΘ= -1 {Because 1+tan^2Θ=sec^2Θ}
2secΘtanΘ= 1 →1
To prove secΘ+tanΘ=√2 secΘ
LHS
secΘ+tanΘ
On squaring,
(secΘ+tanΘ)^2
sec^2Θ+tan^2Θ+2tanΘsecΘ
sec^2Θ+tan^2Θ+1 {Because 1+tan^2Θ=sec^2Θ}
sec^2Θ+sec^2Θ
2sec^2Θ
On rooting,
√2 secΘ
Therefore secΘ+tanΘ=√2 secΘ
Similar questions