if sectheta-tantheta=k,then prove that(k²+1)sintheta=(k²-1)
Answers
Given : sectheta-tantheta=k
secθ - tanθ = k
To Find : prove that (k²+1)sin θ=(k²-1)
Solution:
secθ - tanθ = k
As we know that
sec²θ - tan²θ =1
=> (secθ + tanθ )(secθ - tanθ ) = 1
=> (secθ + tanθ )(k ) = 1
=> secθ + tanθ = 1/k
secθ - tanθ = k
secθ + tanθ = 1/k
=> 2secθ = k + 1/k
=> secθ = (k² + 1)/2k
=> cosθ = 2k/ (k² + 1)
2tanθ = 1/k - k
=> tanθ = ( 1- k²)/2k
(k²+1)sin θ=(k²-1)
LHS = (k²+1)sin θ
= (k²+1) cosθtan θ
= (k²+1) (2k/ (k² + 1)) (( 1- k ²_/2k)
= 1- k ²
≠RHS
problem in data
if secθ + tanθ = k then it will satisfy as then tanθ = ( k² - 1 )/2k
Learn More:
If sinθ + cosθ = √2cosθ, (θ ≠ 90°) then the value of tanθ is a) √2 ...
brainly.in/question/13094229
If 15 tan 0 = 8 Find values of cos 0 & Cosec . - Brainly.in
https://brainly.in/question/34026772