Math, asked by ranjankumar80, 11 months ago

if secx-tanx=m1 then tanx =? ​

Answers

Answered by Anonymous
1

Answer:

tanx =  \frac{1 -  {(m1)}^{2} }{2m1}  \\

Step-by-step explanation:

GIVEN EQUATION HERE

=>secx-tanx=m1....... equation (1)

Apply this fomula

1 +  {tan}^{2} x =  {sec}^{2} x \\  \\  \therefore \:  {sec}^{2} x -  {tan}^{2} x = 1 \\  \\  \therefore \: (secx - tanx)(secx + tanx) = 1 \\  \\  \therefore \: m1(secx + tanx) = 1  \\  \\  \therefore \: secx + tanx =  \frac{1}{m1} ..........equation(2)

Take Equation (2) - Equation (1)

(secx + tanx) - (secx - tanx) =  \frac{1}{m1}  - m1 \\  \\  \therefore \: secx + tanx - secx + tanx =  \frac{1 -  {(m1)}^{2} }{m1}  \\  \\  \therefore \: 2tanx =  \frac{1 -  {(m1)}^{2} }{m1}  \\  \\  \therefore \: tanx =  \frac{1 -  {(m1)}^{2} }{2m1}

Similar questions