Math, asked by Mahu3543, 9 months ago

If secx + tanx = p and secx - tanx= q then what is value of p square - q square .

Answers

Answered by pgilhotra29
0

Step-by-step explanation:

All steps are explained in photo

Attachments:
Answered by Anonymous
2

Given :

  • sec x + tan x = p

  • sec x - tan x = q

To Find :

  • Value of p² - q²

Solution :

By using identity :

 \large\implies\boxed{\sf {a}^{2} - {b}^{2}  = (a + b)(a - b)}

Now

\implies \sf{p}^{2} - {q}^{2} ={( \sec x + \tan x)}^{2}  -{( \sec x  -  \tan x)}^{2} \\ \\\implies \sf({ \sec}^{2}x + { \tan}^{2}x+ 2 \sec x.\tan x) -({ \sec}^{2}x+{\tan}^{2}x - 2 \sec x.\tan x) \\  \\ \implies \sf{ \sec}^{2}x+ { \tan}^{2}x + 2 \sec x.\tan x-{ \sec}^{2}x- { \tan}^{2}x + 2 \sec x.\tan x\\  \\\implies \sf 4 \sec x.\tan x \\  \\ \implies \sf4 \times  \frac{1}{ \cos x}  \times  \frac{ \sin x}{ \cos x} \\  \\\large\implies\boxed {\boxed {\frac{\sf 4\sin x}{{\sf\cos}^2 x}}}

Similar questions