Math, asked by priyadarshi14322, 10 months ago

If sgn (x3 – x2 – 6x) = 1, then number of integral value(s) of x satisfying the equation is (if x (–3, 5))

Answers

Answered by shadowsabers03
26

Correct Question:-

If \sf{sgn(x^3-x^2-6x)=1,} then find no. of integral value(s) of \sf{x} satisfying the equation for \sf{x\in(-3,\ 5),} where \sf{sgn(x)} represents signum function in \sf{x.}

Solution:-

Signum function \sf{sgn(x):\mathbb{R}\to\left\{-1,\ 0,\ 1\right\}} is defined as,

\longrightarrow\sf{sgn(x)=\left\{\begin{array}{rl}\sf{-1,}&\sf{x\ \textless\ 0}\\\sf{0,}&\sf{x=0}\\\sf{1,}&\sf{x\ \textgreater\ 0}\end{array}\right.}

Therefore, according to the question,

\longrightarrow\sf{sgn(x^3-x^2-6x)=1}

\Longrightarrow\sf{x^3-x^2-6x\ \textgreater\ 0}

\longrightarrow\sf{x(x^2-x-6)\ \textgreater\ 0}

\longrightarrow\sf{x(x^2-3x+2x-6)\ \textgreater\ 0}

\longrightarrow\sf{x(x(x-3)+2(x-3))\ \textgreater\ 0}

\longrightarrow\sf{x(x-3)(x+2)\ \textgreater\ 0\quad\quad\dots(1)}

So the equality \sf{x(x-3)(x+2)=0} holds true for \sf{x\in\{-2,\ 0,\ 3\}.}

We see the inequality (1) holds true for \sf{x\ \textgreater\ 3.}

By wavy curve method, we get,

  • (1) holds true for \sf{x\in(3,\ \infty).}

  • (1) does not hold true for \sf{x\in(0,\ 3).}

  • (1) holds true for \sf{x\in(-2,\ 0).}

  • (1) does not hold true for \sf{x\in(-\infty,\ -2).}

Therefore, since \sf{x\in(-3,\ 5),}

\longrightarrow\sf{x\in[(-2,\ 0)\cup(3,\ \infty)]\cap(-3,\ 5)}

\longrightarrow\sf{x\in(-2,\ 0)\cup(3,\ 5)}

Hence integral values of \sf{x} are given by,

\longrightarrow\sf{x\in\{-1,\ 4\}}

Thus the no. of integral values of \sf{x} is \bf{2.}

Similar questions