Math, asked by rairomika59, 9 months ago

if simple interest and compound interest of a certain of money for two years are RS.8400 and RS.8652 , then find the sum of money and the rate of interest​

Answers

Answered by vickeyGupta6656
12

Answer:

to find the sum of simple interest = p×100/t×r

so 8400×100/2 = 16,800

so the simple interest sums = 16,800

then rate = i×100/p×t

8400×100/16800×2 = 50/2

25%

so the rate of interest is 25%

and now compound interest = 16,800

+ interest

16,800+8652

25452

so the compound interest sums = 25,452

hey mate here your answer make it brainlist

if you liked it makes it brainlist

Answered by vaishu775
4

\LARGE\boxed{\textsf{\textbf{\pink{Given\::-}}}}

  • Simple interest and compound interest of a certain sum of money for two years are Rs. 8400 and Rs. 8652.

\LARGE\boxed{\textsf{\textbf{\green{To\:Find\::-}}}}

  • Sum of money and rate of interest?

\LARGE\boxed{\textsf{\textbf{\blue{Solution\::-}}}}

\underline{\sf{\bigstar\:Formulae\:used\::-}}

\quad\odot\:{\underline{\boxed{\bf{\red{S.I = \dfrac{P\:\times\:R\:\times\:T}{100}}}}}}

\quad\odot\:{\underline{\boxed{\bf{\purple{C.I = {P\bigg(1 + \dfrac{R}{100}\bigg)}^{T} - P}}}}}

Where,

  • P = Principal (sum of money)
  • R = Rate of interest
  • T = Time
  • S.I = Simple interest
  • C.I = Compound interest

  • Let sum of money be P
  • And rate of interest be R

\underline{\sf{\bigstar\:According\:to\:the\:given\:Question\::-}}

\begin{gathered}\\ \longrightarrow \:\sf S.I = 8400 \end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf \dfrac{P\:\times\:R\:\times\:T}{100} = 8400 \end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf \dfrac{P\:\times\:R\:\times\:2}{100} = 8400 \end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf \dfrac{\cancel{2}PR}{\cancel{100}} = 8400 \end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf \dfrac{PR}{50} = 8400 \end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf PR = 8400\:\times\:50\end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf PR = 420000 \:\dashrightarrow\:(1) \end{gathered}

Now,

\begin{gathered}\\ \longrightarrow \:\sf C.I = 8652\end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf {P\bigg(1 + \dfrac{R}{100}\bigg)}^{T} - P = 8652\end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf {P(1 + 0.01R)}^{2} - P = 8652\end{gathered}

  • Using identity, (a + b)² = a²+b² + 2ab on (1 + 0.01R)² ::

\begin{gathered}\\ \longrightarrow \:\sf P[(1)^2 + (0.01R)^2 + 2(1)(0.01R)] - P = 8652\end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf P(1 + 0.0001R^2 + 0.02R - P = 8652\end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf \cancel{P} + 0.0001PR^2 + 0.02PR - \cancel{P} = 8652\end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf 0.0001(PR)R + 0.02PR = 8652\end{gathered}

  • Putting value of PR from (1) ::

\begin{gathered}\\ \longrightarrow \:\sf 0.0001(420000)R + 0.02(420000) = 8652\end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf 42R + 8400 = 8652\end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf 42R = 8652 - 8400\end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf 42R = 252\end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf R = {\cancel{\dfrac{252}{42}}}\end{gathered}

\begin{gathered}\\ \longrightarrow \:\bf \orange{R = 6}\end{gathered}

Therefore, Rate of interest is 6 % per annum.

  • Putting value of R in (1) ::

\begin{gathered}\\ \longrightarrow \:\sf P(6) = 420000\end{gathered}

\begin{gathered}\\ \longrightarrow \:\sf P = {\cancel{\dfrac{420000}{6}}}\end{gathered}

\begin{gathered}\\ \longrightarrow \:\bf\orange{ P = 70000}\end{gathered}

  • Therefore, sum of money is Rs. 70,000.

Similar questions