Math, asked by samartaj, 10 months ago

if
simple interest on a sum of money at 4% per annum for 6 years is 2400, find
the compound interest
on the same sum for the same period at the same rate.answer is £2653.19​

Answers

Answered by Anonymous
122

AnswEr :

\bold{Given} \begin{cases} \sf{Simple \: Interest=Rs. 2400} \\ \sf{Rate=4\% \: p.a.}  \\  \sf{Time=6 \: Yr.}\\ \sf{Principal=?}\end{cases}

⇒ Simple Interest = PRT /100

⇒ 2400 = P × 4 × 6 /100

⇒ 2400 × 100 = P × 24

⇒ 240000 = 24P

⇒ P = 240000 /24

P = Rs. 10000

_________________________________

\bold{Now \: We \: Have} \begin{cases} \sf{Principal=Rs. 10000} \\ \sf{Rate=4\% \: p.a.}  \\  \sf{Time=6 \: Yr.}\\  \sf{Compound  \: Interest=?}\end{cases}

\leadsto\sf{CI = \bigg[P \bigg(1 + \dfrac{r}{100}   \bigg)^{t}  - 1 \bigg]}

\leadsto\sf{CI = \bigg[10000\bigg(1 +  \cancel\dfrac{4}{100}   \bigg)^{6}  - 1 \bigg]}

\leadsto\sf{CI = \bigg[10000 \bigg(1 + \dfrac{1}{25}   \bigg)^{6}  - 1 \bigg]}

\leadsto\sf{CI = \bigg[10000 \bigg(\dfrac{26}{25}   \bigg)^{6}  - 1 \bigg]}

\leadsto\sf{CI = \bigg[10000 \bigg(\dfrac{308,915,776}{244,140,625} - 1  \bigg) \bigg]}

\leadsto\sf{CI = \bigg[10000  \times \dfrac{64,775,151}{244,140,625} \bigg]}

\leadsto\sf{CI = \bigg[10000  \times 0.265319 \bigg]}

\leadsto \large \boxed{\sf{CI =Rs. \: 2653.19}}

Compound Interest is Rs. 2653.19

Answered by Sharad001
74

Question :-

if simple interest on a sum of money at 4% per annum for 6 years is 2400, find

the compound interest on the same sum for the same period at the same rate.

Answer :-

→ Compound interest is Rs 2653.1902

To find :-

→ Compound interest .

Formula used :-

 \star  \boxed{\sf \:  \: { \pink{ Simple \: interest} \:  =  \frac{PRT}{100} } }\\  \\  \red{\sf{ \small  \star \: Compound \: interest \:}  = \green{ Amount \:  - principal} }\\  \\  \star  \boxed{\sf{  \pink{amount }\:  = p { \red{ \bigg(1 +  \frac{r}{100} \bigg) }^{t} }}}

_____________________________

Step - by - step explanation :-

Given that ,

  • Rate ( R) = 4% p.a.

  • Time ( T) = 6 years .

  • Simple interest ( SI) = Rs.2400

  • Principal ( P ) = ?

  • Amount = ?

  • Compound interest ( CI) = ?

Solution :-

Using the given formula for SI.

 \rightarrow \sf{ \green{2400 =  \frac{P \times 4 \times 6}{100} }} \\  \\  \rightarrow \sf{ P \:  \:  =  \frac{240000}{24} } \\  \\ \red{ \rightarrow  \boxed{\sf{P \: (principal) = 10000}}}

_______________________________

 \rightarrow  \red{\sf{Amount \:  = 10000} \: \pink{  { \bigg(1 +  \frac{4}{100}  \bigg)}^{6} }} \\  \\  \rightarrow \sf{ Amount = 10000 { \green{ \bigg( { \frac{26}{25} \bigg) }^{6} } }}\\  \\ \rightarrow \sf{ \red{Amount \: }  =  \pink{10000 \times  {(1.04)}^{6} }} \\  \\ \rightarrow \sf{ Amount \:  =  \red{10000 \times 1.26531902} }\\  \\ \rightarrow \boxed{ \sf{  \green{Amount \:  = 12653.1902}}}

______________________________

We know that ,

Compound interest = Amount- Principal

→ CI = 12653.1902 - 10,000

→ CI = Rs. 2653.1902

_______________________________

Similar questions