. If sin 0
a² – b²
a² +b²
find the values of all T-ratios of 0.
Answers
Answered by
3
Answer:
hi
Step-by-step explanation:
We have,
sin A = HypotenusePerpendicular=a2+b2a2−b2
So, we draw a right triangle right angled at B such that
Perpendicular = a2−b2 and, Hypotenuse = a2+b2. and ∠BAC=θ
By Pythagoras theorem, we have
AC2=AB2+BC2
⇒AB2=(a2+b2)2−(a2−b2)2
⇒AB2=(a4+b4+2a2b2)−(a4+b4−2a2b2)
⇒AB2=4a2b2=(2ab)2
⇒AB=2ab
When we consider the trigonometric ratios of ∠BAC=θ , we have
Base = AB = 2ab, Perpendicular = BC = a2−b2, and Hypotenuse = AC = a2+b2
∴cosθ=Hypotenuse/Base=a2+b2/2ab
⇒tanθ=Base/Perpendicular=2ab/a2−b2
⇒cosecθ=Perpendicular/Hypotenuse=a2−b2/a2+b2
⇒secθ=Base/Hypotenuse=2ab/a2+b2
and,
cotθ=Perpendicular/Base=a2−b2/2ab
Similar questions