Math, asked by sks1273, 4 months ago

If sin 0 + cos 0 = √2 sin (90° -
0), show that cot o =√2 +1.

Answers

Answered by mathdude500
2

Given Question :-

\tt \:  \longrightarrow \: If  \: sinx \:  +  \: cosx \:  =  \sqrt{2} sin(90 - x)

\tt \:  \longrightarrow \: prove \: that \: cotx \:  =  \:  \sqrt{2}  \:  +  \: 1

Solution:

\tt \:  \longrightarrow \:  \: sinx \:  +  \: cosx \:  =  \sqrt{2} sin(90 - x)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{ \because \: \bf \:  sin(90 - x) = cosx \}

\tt \:  \longrightarrow \:  \: sinx \:  +  \: cosx \:  =  \sqrt{2}  \: cosx

\tt \:  \longrightarrow \:  \: sinx \:  \:  =  \sqrt{2}  \: cosx \:  -  \: cosx

\tt \:  \longrightarrow \: sin \: x \:  =  \: cosx \: ( \sqrt{2}  - 1)

\tt \:  \longrightarrow \: \dfrac{cosx}{sinx}  = \dfrac{1}{ \sqrt{2}  - 1}

\tt \:  \longrightarrow \: cotx \:  = \dfrac{1}{ \sqrt{2} - 1 }  \times \dfrac{ \sqrt{2}  + 1}{ \sqrt{2}  + 1}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{ \because \:\bf \:  ⟼  on  \: rationalization \}

\tt \:  \longrightarrow \: cotx \:  = \dfrac{ \sqrt{2}  + 1}{ {( \sqrt{2}) }^{2} -  {(1)}^{2}  }

\tt \:  \longrightarrow \: cotx \:  = \dfrac{ \sqrt{2} + 1 }{2 - 1}

\tt\implies \:cotx \:  =  \:  \sqrt{2}  + 1

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions