Math, asked by Ruthvikvishnu1912, 10 months ago

If sin 0 + cos 0 = √2 sin (90° - 0). then find cos 0.

solve this question ​

Answers

Answered by murthygunda1976
1

Step-by-step explanation:

your answer is in attachment

Attachments:
Answered by Cynefin
1

Answer:

Hey Mate, Good evening ❤

#Here's ur answer..☆☆☆

Step-by-step explanation:

 \boxed{ \huge{ \red{theta =  \alpha }}}

 \bold{ \green{given \: ...}} \bold{ \sin( \alpha )  +  \cos( \alpha )  =  \sqrt{2}  \sin(90  -  \alpha ) } \\  \bold{to \: find \:  \cos( \alpha ) } \\

 =  >  \sin( \alpha )  +  \cos( \alpha )  =  \sqrt{2}  \sin(90 -  \alpha )  \\  =  >  \sin( \alpha )  +  \cos( \alpha )  =  \sqrt{2}  \cos( \alpha )  \\ ( \bold{ \red{ \sin(90 -  \alpha )  =  \cos( \alpha ) }}) \\  =  >  \sin( \alpha )  =  \sqrt{2} \cos( \alpha )   -  \cos( \alpha )  \\  =  >  \sin( \alpha )  =  \cos( \alpha ) ( \sqrt{2}  - 1) \\  =  >  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  =  \sqrt{2}  - 1 \\  =  >  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  =  \frac{1}{ \sqrt{2}  - 1}  \\  =  \frac{( \sqrt{2}  + 1)}{( \sqrt{2} - 1)( \sqrt{2} + 1)  }  =  \sqrt{2}  + 1 (\blue{answer})

 \cot( \alpha )  =  \sqrt{2}  + 1

➡️Hope this helps you..

➡️Pls mark as brainliest..

Similar questions