If sin 0 + cos 0 = V2 Cos ( 90° - 0), find cote.
Answers
Answered by
1
LET THETA = ALPHA
\sin( \alpha ) + \cos( \alpha ) = \sqrt{2} \cos( 90 - \alpha ) \\ \\ \sin( \alpha ) + \cos( \alpha ) = \sqrt{2} \sin( \alpha ) \\ \\ \cos( \alpha ) = \sqrt{2} \sin( \alpha ) - \sin( \alpha ) \\ \\ \cos( \alpha ) = \sin \alpha ( \sqrt{2} - 1) \\ \\ \frac{ \cos( \alpha ) }{ \sin( \alpha ) } = ( \sqrt{2} - 1) \\ \\ \cot( \alpha ) = ( \sqrt{2} - 1)
I HOPE ITS HELP YOU
\sin( \alpha ) + \cos( \alpha ) = \sqrt{2} \cos( 90 - \alpha ) \\ \\ \sin( \alpha ) + \cos( \alpha ) = \sqrt{2} \sin( \alpha ) \\ \\ \cos( \alpha ) = \sqrt{2} \sin( \alpha ) - \sin( \alpha ) \\ \\ \cos( \alpha ) = \sin \alpha ( \sqrt{2} - 1) \\ \\ \frac{ \cos( \alpha ) }{ \sin( \alpha ) } = ( \sqrt{2} - 1) \\ \\ \cot( \alpha ) = ( \sqrt{2} - 1)
I HOPE ITS HELP YOU
Similar questions