If sin 0 + cos O =√3 then prove that tan 0 + cot 0 = 1
Answers
Answered by
3
Question:
If sin@ + cos@ = √3 , then prove that,
tan@ + cot@ = 1.
Note:
• (A+B)^2 = A^2 + B^2 + 2•A•B
• (sin@)^2 + (cos@)^2 = 1
• (tan@)^2 + 1 = (sec@)^2
• (cot@)^2 + 1 = (cosec@)^2
• tan@ = sin@/cos@
• cot@ = 1/tan@ = cos@/sin@
Solution:
Given:
sin@ + cos@ = √3
To prove:
tan@ + cot@ = 1
Proof:
We have;
sin@ + cos@ = √3 --------(1)
Now,
Squaring both sides of eq-(1) ,
We get;
=> (sin@ + cos@)^2 = (√3)^2
=> (sin@)^2+(cos@)^2+2•sin@•cos@=3
=> 1 + 2•sin@•cos@ = 3
{(sin@)^2 + (cos@)^2 = 1}
=> 2•sin@•cos@ = 3 - 1
=> 2•sin@•cos@ = 2
=> sin@•cos@ = 2/2
=> sin@•cos@ = 1
Now,
We have LHS
= tan@ + cot@
= sin@/cos@ + cos@/sin@
={(sin@)^2 + (cos@)^2}/cos@•sin@
= 1/sin@•cos@
= 1/1
= 1
= RHS
Hence proved.
Similar questions