Math, asked by ayushmantrivedi2021, 3 months ago

If sin 0 + cos O = √
3, then prove that
tan A+ coto= 1.

Answers

Answered by vipashyana1
1

\mathfrak{\huge{Answer:-}}\\ sinθ+cosθ= \sqrt{3}  \\ Squaring  \: on  \: both  \: the  \: sides  \\  {(sinθ + cosθ)}^{2} = {( \sqrt{3}) }^{2}  \\  {sin}^{2} θ+ {cos}^{2}θ+2sinθcosθ=3 \\ 1+2sinθcosθ=3 \\2sinθcosθ=3-1 \\ 2sinθcosθ=2 \\ 2sinθcosθ-2=0 \\ 2(sinθcosθ-1)=0 \\ sinθcosθ-1=0 \\ sinθcosθ=1 \\ tanθ + cotθ = 1 \\  \frac{sinθ}{cosθ}  + \frac{cosθ}{sinθ}  = 1 \\  \frac{ {sin}^{2} θ +  {cos}^{2} θ}{sinθcosθ}  = 1 \\  \frac{1}{1}  = 1 \\ 1 = 1\\LHS=RHS\\Hence  \: proved

Similar questions