if sin 0 + sin² 0=1, then cos² 0 +cos⁴ 0=
help fast
Answers
Answer:
2 is your answer it's ok
Step-by-step explanation:
☸ Correct Question:
✒ sin θ + sin² θ = 1
Prove that cos² θ + cos⁴ θ = 1
━━━━━━━━━━━━━━━━━━━━
☸ How to solve?
For proving the above trignometric equation, we need to know only one identity i.e..
sin² θ + cos² θ = 1
❇ Some other identities:
sec² θ - tan² θ = 1
cosec² θ - cot² θ = 1
sin(A + B) = sinAcosB + sinBcosA
cos(A + B) = cosAcosB - sinAsinB
sin(A - B) = sinAcosB - sinBcosA
cos(A - B) = cosAcosB + sinAsinB
━━━━━━━━━━━━━━━━━━━━
☸ Solution:
We have,
sin θ + sin² θ = 1
This can be written as,
➙ sin θ + sin² θ = 1
➙ sin θ = 1 - sin² θ
[ From identity sin² θ + cos²θ = 1 ]
➙ sin θ = cos² θ
[ Squaring both sides ]
➙ (sin θ)² = (cos² θ)²
➙ sin² θ = cos⁴ θ
[ Again, using the same identity ]
➙ 1 - cos² θ = cos⁴ θ
➙ 1 = cos⁴ θ + cos² θ
➙ cos² θ + cos⁴ θ = 1
✒ Hence, proved!