if sin 0 +sin²0 =1 then prove that cos²0+cos⁴0=1
Answers
Answered by
27
━━━━━━━━━━━━━━━━━━━━
☸ Correct Question:
✒ sin θ + sin² θ = 1
Prove that cos² θ + cos⁴ θ = 1
━━━━━━━━━━━━━━━━━━━━
☸ How to solve?
For proving the above trignometric equation, we need to know only one identity i.e
- sin² θ + cos² θ = 1
❇ Some other identities:
- sec² θ - tan² θ = 1
- cosec² θ - cot² θ = 1
- sin(A + B) = sinAcosB + sinBcosA
- cos(A + B) = cosAcosB - sinAsinB
- sin(A - B) = sinAcosB - sinBcosA
- cos(A - B) = cosAcosB + sinAsinB
━━━━━━━━━━━━━━━━━━━━
☸ Solution:
We have,
- sin θ + sin² θ = 1
This can be written as,
➙ sin θ + sin² θ = 1
➙ sin θ = 1 - sin² θ
[ From identity sin² θ + cos²θ = 1 ]
➙ sin θ = cos² θ
[ Squaring both sides ]
➙ (sin θ)² = (cos² θ)²
➙ sin² θ = cos⁴ θ
[ Again, using the same identity ]
➙ 1 - cos² θ = cos⁴ θ
➙ 1 = cos⁴ θ + cos² θ
➙ cos² θ + cos⁴ θ = 1
✒ Hence, proved!
━━━━━━━━━━━━━━━━━━━━
Similar questions