Math, asked by handakanu34, 8 months ago

if sin 0 +sin²0 =1 then prove that cos²0+cos⁴0=1​

Answers

Answered by Cynefin
27

━━━━━━━━━━━━━━━━━━━━

Correct Question:

✒ sin θ + sin² θ = 1

Prove that cos² θ + cos⁴ θ = 1

━━━━━━━━━━━━━━━━━━━━

How to solve?

For proving the above trignometric equation, we need to know only one identity i.e.

  • sin² θ + cos² θ = 1

Some other identities:

  • sec² θ - tan² θ = 1
  • cosec² θ - cot² θ = 1
  • sin(A + B) = sinAcosB + sinBcosA
  • cos(A + B) = cosAcosB - sinAsinB
  • sin(A - B) = sinAcosB - sinBcosA
  • cos(A - B) = cosAcosB + sinAsinB

━━━━━━━━━━━━━━━━━━━━

Solution:

We have,

  • sin θ + sin² θ = 1

This can be written as,

➙ sin θ + sin² θ = 1

➙ sin θ = 1 - sin² θ

[ From identity sin² θ + cos²θ = 1 ]

➙ sin θ = cos² θ

[ Squaring both sides ]

➙ (sin θ)² = (cos² θ)²

➙ sin² θ = cos⁴ θ

[ Again, using the same identity ]

➙ 1 - cos² θ = cos⁴ θ

➙ 1 = cos⁴ θ + cos² θ

➙ cos² θ + cos⁴ θ = 1

Hence, proved!

━━━━━━━━━━━━━━━━━━━━

Similar questions