Math, asked by kabirkashyap775, 2 months ago

)If sin θ =1/√2 then find cos θ​

Answers

Answered by Anonymous
4

Given :-

\sf{ \sin \theta} =\dfrac{1}{\sqrt2}

To find :-

\sf{ \cos\theta}

Solution:-

Method :- 1

We know the identity

sin²A + cos² A = 1

cos²A = 1- sin²A

\sf{ \sin\theta} =\dfrac{1}{\sqrt2}

\sf  \sin^2 \theta =   \dfrac{1}{ \sqrt{(2)}^{2}}

\sf{\sin^2\theta} = \dfrac{1}{2}

So,

cos²A = 1- sin²A

\sf{\cos^2\theta} = 1 - \dfrac{1}{2}

\sf{\cos^2\theta} = \dfrac{1}{2}

\sf{\cos\theta} = \sqrt{ \dfrac{1}{2} }  =  \dfrac{1}{ \sqrt{2} }

_____________________________

Method - 2 :-

Observe the attachment

sinA = opp/ hyp

cosA = adj/hyp

So,

We can find adjacent side by pythagoras theoram

AB² + BC² = AC²

(1)² + BC² =  ( \sqrt{2} )^{2}

1 + BC² = 2

BC² = 2-1

BC² = 1

BC = 1

Now , cos A = adj/hyp

cos A = BC/ AC

\sf{\cos\theta} = 1/\sf\sqrt{2}

_______________

Know more :-

Trigon metric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonmetric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Attachments:
Similar questions