Math, asked by yashmishra94, 4 months ago

If sin θ = 12/13, 0° < θ < 90°, find the value of: sin² θ- cos² θ /2 sin θ. cos θ x 1/tan² θ​

Answers

Answered by geetalibora19
1

Answer:

 \frac{595}{3456}

Step-by-step explanation:

Given,

 \sin(a)  =  \frac{12}{13}

 {13}^{2}  =   {12}^{2}

169 - 144 = 25

5

 \cos(a)  =  \frac{5}{13}

 \tan(a)  =  \frac{12}{5}

therefore.

 \frac{( \frac{12}{13}  {)}^{2}  - ( \frac{5}{13}  {)}^{2} }{2( \frac{12}{13}) - ( \frac{5}{13}  )}   \times  \frac{1}{( \frac{12}{5}  {)}^{2} }

 \frac{ (\frac{144}{169}) -  (\frac{25}{169}  )}{2( \frac{12}{13} )( \frac{5}{13} )}  \times  \frac{25}{144}

 \frac{ (\frac{144 - 25}{169} )}{( \frac{120}{169} )}  \times  \frac{25}{144}

 \frac{119}{120}  \times  \frac{25}{144}

 \frac{119}{24}  \times  \frac{5}{144}

 \frac{595}{3456}

Similar questions