If sin????=12/13 , find the value of sin²????-cos²????/2sin????cos????*1/tan²????
Answers
Answered by
2
Step-by-step explanation:
I
heyyyyyyyyyyyyyuyyyy
Attachments:
Answered by
4
sin²θ-cos²θ/2sinθcosθ * 1/ tan²θ = 0.172
Step-by-step explanation:
Given: sinθ = 12/13
To find: value of sin²θ-cos²θ/2sinθcosθ * 1/ tan²θ
Solution:
sinθ = 12/13 = Opposite / Hypotenuse.
So Adjacent = √(13² - 12² = √(169 - 144) = √25 = 5
Now sinθ = 12/13
Cosθ = 5/13
Tanθ = 12/5
sin²θ-cos²θ/2sinθcosθ * 1/ tan²θ = [(12/13)² - (5/13)²] / 2.(12/13)(5/13) * 1/(12/5)²
= (144-25/169) / (24*5/169) * 25/144
= 119/ 120 *25/144
= 0.172
sin²θ-cos²θ/2sinθcosθ * 1/ tan²θ = 0.172
Similar questions