If sin 17 degree equal to x by y then the value of 617 degree minus sin 73 degree is
Answers
Answered by
0
Explanation:
By the cofunction identity:
sin(73∘)=cos(90∘−73∘)=cos(17∘)sin(73∘)=cos(90∘-73∘)=cos(17∘)
So we have sec(17∘)−cos(17∘)sec(17∘)-cos(17∘). We know that sec(x)=1cos(x)sec(x)=1cos(x) so we can rewrite this expression:
1cos(17∘)−cos(17∘)=1−cos2(17∘)cos(17∘)1cos(17∘)-cos(17∘)=1-cos2(17∘)cos(17∘)
By the Pythagorean ID, sin2(x)+cos2(x)=1sin2(x)+cos2(x)=1and so 1−cos2(x)=sin2(x)1-cos2(x)=sin2(x):
sin2(17∘)cos(17∘)sin2(17∘)cos(17∘)
Rearranging sin2(x)+cos2(x)=1sin2(x)+cos2(x)=1 we can also see that cos(x)=√1−sin2(x)cos(x)=1-sin2(x).
(Since 17∘17∘ is in QI all trig functions are positive.)
sin2(17∘)√1−sin2(17∘)sin2(17∘)1-sin2(17∘).
Now we substitute xyxy for sin(17∘)sin(17∘):
(xy)2√1−(xy)2(xy)21-(xy)2.
Now we do some algebra:
x2y2√1−x2y2=x2y2√y2−x2y2x2y21-x2y2=x2y2y2-x2y2
=x2y2(1y)√y2−x2=y⋅(x2y2)√y2−x2=x2y2(1y)y2-x2=y⋅(x2y2)y2-x2
=x2y√y2−x2=x2y⋅√y2−x2=x2yy2-x2=x2y⋅y2-x2, as required
By the cofunction identity:
sin(73∘)=cos(90∘−73∘)=cos(17∘)sin(73∘)=cos(90∘-73∘)=cos(17∘)
So we have sec(17∘)−cos(17∘)sec(17∘)-cos(17∘). We know that sec(x)=1cos(x)sec(x)=1cos(x) so we can rewrite this expression:
1cos(17∘)−cos(17∘)=1−cos2(17∘)cos(17∘)1cos(17∘)-cos(17∘)=1-cos2(17∘)cos(17∘)
By the Pythagorean ID, sin2(x)+cos2(x)=1sin2(x)+cos2(x)=1and so 1−cos2(x)=sin2(x)1-cos2(x)=sin2(x):
sin2(17∘)cos(17∘)sin2(17∘)cos(17∘)
Rearranging sin2(x)+cos2(x)=1sin2(x)+cos2(x)=1 we can also see that cos(x)=√1−sin2(x)cos(x)=1-sin2(x).
(Since 17∘17∘ is in QI all trig functions are positive.)
sin2(17∘)√1−sin2(17∘)sin2(17∘)1-sin2(17∘).
Now we substitute xyxy for sin(17∘)sin(17∘):
(xy)2√1−(xy)2(xy)21-(xy)2.
Now we do some algebra:
x2y2√1−x2y2=x2y2√y2−x2y2x2y21-x2y2=x2y2y2-x2y2
=x2y2(1y)√y2−x2=y⋅(x2y2)√y2−x2=x2y2(1y)y2-x2=y⋅(x2y2)y2-x2
=x2y√y2−x2=x2y⋅√y2−x2=x2yy2-x2=x2y⋅y2-x2, as required
Similar questions