Math, asked by kuamarsachin04, 1 year ago

If sin 17= x/y, Find sec 17 - sin73

Answers

Answered by shameemamk
29

Answer:

Step-by-step explanation:

Please see the attached answer

Attachments:
Answered by amirgraveiens
12

Hence, sec 17 - sin73 = \frac{x^2}{y\sqrt{y^2-x^2} }

Step-by-step explanation:

Given:

Here,  sin 17 = \frac{x}{y}

sec 17 - sin73

\frac{1}{cos 17} - cos (90-17)                  [sec\theta =\frac{1}{cos\theta}]

\frac{1-cos^217}{cos17}

\frac{sin^217}{(\sqrt{cos17} )^2}               [sin^2\theta+cos^2\theta=1]

\frac{sin^217}{\sqrt{1-sin^217}}                  [sin^2\theta+cos^2\theta=1]

\frac{\frac{x^2}{y^2} }{\sqrt{1-\frac{x^2}{y^2} } }     [given]

\frac{\frac{x^2}{y^2} }{\sqrt{\frac{y^2-x^2}{y^2} } }

\frac{x^2}{y^2} \times\frac{y}{y^2-x^2}         [root and square cancels, (\sqrt{y} )^{2} =y ]

\frac{x^2}{y\sqrt{y^2-x^2} }

Hence, sec 17 - sin73 = \frac{x^2}{y\sqrt{y^2-x^2} }

Similar questions