If sin 17° = 7, then the value of
(sec 17° - sin 73°) is
Answers
Answer:
Given that
As we know that,
So,
Now,
As, cos (90 - θ) = sinθ
So,
So,
Now,
OR
As we know that,
sin(90-θ) = cosθ
so,
sin 73 = cos 17.
So ,
sec17 - cos 17
= sec17 - (1/sec17)
=(sec^2 17 - 1) /(sec17)
Answer:
Basic Formulas:
- Sin A = Cos ( 90 - A )
- Sec²A - 1 = Tan²A
Given:
- Sin 17° = 7
To find:
- ( Sec 17° - Sin 73° )
Solution:
Using the first formula we can write Sin 73° as follows:
⇒ Sin 73° = Cos ( 90 - 73 )°
⇒ Sin 73° = Cos 17°
Substituting it there, we get,
⇒ Sec 17° - Cos 17°
Now we can write Cos 17° as 1 / Sec 17°. By this we get,
⇒ Sec 17° - ( 1 / Sec 17° )
Taking LCM we get,
⇒ ( Sec²17° - 1 ) / Sec 17°
Now applying Second formula we get,
⇒ Tan² 17° / Sec 17°
Writing Tan and Sec values in terms of Sin and Cos we get,
⇒ ( Sin² 17° / Cos²17° ) ÷ ( 1 / Cos 17° )
⇒ ( Sin² 17° / Cos 17° )
⇒ Sin 17° × Sin 17° / Cos 17°
⇒ Sin 17° × Tan 17°
Simplifying further we get,
⇒ 7 × Tan 17°
This is the value. Unless we know the values, we cant arrive at a defined value. Another method is by using Complex Numbers as posted above.