Math, asked by himsingh46, 1 year ago

If sin 17° = 7, then the value of
(sec 17° - sin 73°) is​

Answers

Answered by SparklingBoy
34

Answer:

Given that

sin17 \degree = 7 \\ so \\ {sin}^{2} 17 \degree = 49

As we know that,

 {sin}^{2}  \theta +  {cos}^{2}  \theta = 1

So,

 {cos}^{2} 17 \degree = 1 - 49 \\  =  - 48 \:  \\  \implies \: cos17\degree  = \sqrt{ - 48}

Now,

as \:  \:  \: cos17\degree =  \sqrt{ - 48}  \\ cos(90 - 73) =  \sqrt{ - 48}  \\  sec \: 17 =  \frac{1}{ \sqrt{ - 48} }

As, cos (90 - θ) = sinθ

So,

cos(90 - 73)  = sin73 \degree

So,

sin73 \degree =  \sqrt{ - 48}

Now,

sec17 - sin73 \\  =  \frac{1}{ \sqrt{ - 48} }  -  \sqrt{ - 48}

 =  \dfrac{1}{ \sqrt{48}  \iota}  -  \sqrt{48}  \iota \\ \\ =  \dfrac{1 - 48 { \iota}^{2} }{ \sqrt{48}  \iota} \\ \\  =  \frac{1 + 48}{ \sqrt{48} \iota } \\ \\  =  \frac{49}{ \sqrt{48}\iota} \times  \frac{ -  \sqrt{48}\iota}{ -  \sqrt{48}\iota}   \\ \\ =    \frac{ - 49 \sqrt{48}  \iota}{ - 48 {\iota}^{2} }  \\ \\  =  \frac{ - 49 \sqrt{48} \iota}{48}

OR

As we know that,

sin(90-θ) = cosθ

so,

sin 73 = cos 17.

So ,

sec17 - cos 17

= sec17 - (1/sec17)

=(sec^2 17 - 1) /(sec17)

= \dfrac{ {tan}^{2} 17}{sec17}  \\  \\  =  \dfrac{ \dfrac{ {sin}^{2}17 }{ {cos}^{2}17 } }{ \dfrac{1}{cos17} } \\ \\ =  \frac{{sin}^{2} 17}{cos17}  \\ \\  = sin17 \times  \frac{sin17}{cos17}  \\ \\  = 7 \times tan17 \\  \\ = 7tan17

Answered by Steph0303
29

Answer:

Basic Formulas:

  • Sin A = Cos ( 90 - A )
  • Sec²A - 1 = Tan²A

Given:

  • Sin 17° = 7

To find:

  • ( Sec 17° - Sin 73° )

Solution:

Using the first formula we can write Sin 73° as follows:

⇒ Sin 73° = Cos ( 90 - 73 )°

⇒ Sin 73° = Cos 17°

Substituting it there, we get,

⇒ Sec 17° - Cos 17°

Now we can write Cos 17° as 1 / Sec 17°. By this we get,

⇒ Sec 17° - ( 1 / Sec 17° )

Taking LCM we get,

⇒ ( Sec²17° - 1 ) / Sec 17°

Now applying Second formula we get,

⇒ Tan² 17° / Sec 17°

Writing Tan and Sec values in terms of Sin and Cos we get,

⇒ ( Sin² 17° / Cos²17° ) ÷ ( 1 / Cos 17° )

⇒ ( Sin² 17° / Cos 17° )

⇒ Sin 17° × Sin 17° / Cos 17°

⇒ Sin 17° × Tan 17°

Simplifying further we get,

⇒ 7 × Tan 17°

This is the value. Unless we know the values, we cant arrive at a defined value. Another method is by using Complex Numbers as posted above.

Similar questions