if sin^-1x+sin^-1y+sin^-1z=π
Answers
Answered by
4
sin⁻¹x + sin⁻¹y + sin⁻¹z = π
sin⁻¹x = A......x = sinA
sin⁻¹y = B......y = sinB
sin⁻¹z = C......z = sinC
then A + B + C = π
x[√(1 - x²)]+ y[√(1 - y²)]+z[√(1 - z²)] = 2xyz
sinAcosA + sinBcosB +sinCcosC = 2sinAsinBsinC
sin2A + sin2B + sin2C = 4sinAsinBsinC.....(1)
so prove (1)
sin2A + sin2B + sin2C
= 2sin(A + B)cos(A - B) + sin[2π- 2A - 2B]
= 2sin(A + B)cos(A - B) - sin(2A + 2B)
= 2sin(A + B)cos(A - B) - 2sin(A + B)cos(A + B)
= 2sin(A + B)[cos(A - B) - cos(A + B)]
= 2sin(A + B)・2[(-1)(-1) sinAsinB]
= 4sin(π - C)・sinAsinB
= 4sinAsinBsinC
sin⁻¹x = A......x = sinA
sin⁻¹y = B......y = sinB
sin⁻¹z = C......z = sinC
then A + B + C = π
x[√(1 - x²)]+ y[√(1 - y²)]+z[√(1 - z²)] = 2xyz
sinAcosA + sinBcosB +sinCcosC = 2sinAsinBsinC
sin2A + sin2B + sin2C = 4sinAsinBsinC.....(1)
so prove (1)
sin2A + sin2B + sin2C
= 2sin(A + B)cos(A - B) + sin[2π- 2A - 2B]
= 2sin(A + B)cos(A - B) - sin(2A + 2B)
= 2sin(A + B)cos(A - B) - 2sin(A + B)cos(A + B)
= 2sin(A + B)[cos(A - B) - cos(A + B)]
= 2sin(A + B)・2[(-1)(-1) sinAsinB]
= 4sin(π - C)・sinAsinB
= 4sinAsinBsinC
Similar questions