Math, asked by bibek17, 1 year ago

if sin^-1x+sin^-1y+sin^-1z=π

Answers

Answered by nikhita2
4
sin⁻¹x + sin⁻¹y + sin⁻¹z = π 

     sin⁻¹x = A......x = sinA 
     sin⁻¹y = B......y = sinB 
     sin⁻¹z = C......z = sinC 


then A + B + C = π 

     x[√(1 - x²)]+ y[√(1 - y²)]+z[√(1 - z²)] = 2xyz 
       sinAcosA + sinBcosB +sinCcosC = 2sinAsinBsinC 
  sin2A + sin2B + sin2C = 4sinAsinBsinC.....(1) 


so prove (1) 

 sin2A + sin2B + sin2C 

= 2sin(A + B)cos(A - B) + sin[2π- 2A - 2B] 

= 2sin(A + B)cos(A - B) - sin(2A + 2B) 

= 2sin(A + B)cos(A - B) - 2sin(A + B)cos(A + B) 

= 2sin(A + B)[cos(A - B) - cos(A + B)] 

= 2sin(A + B)・2[(-1)(-1) sinAsinB] 

= 4sin(π - C)・sinAsinB 

= 4sinAsinBsinC
Similar questions