Math, asked by Manshi4747, 1 year ago

If sin^-1x+sin^-1y+sin^-1z=pi,prove that

(i) x(1-x^2)^1/2 +y(1-y^2)^1/2 +z(1-z^2)^1/2=2xyz

(ii) x^4 +y^4 +z^4 +4x^2 y^2 z^2 =2(x^2 y^2 +y^2 z^2+z^2-- x^2

Answers

Answered by RohitSaketi
21
here it is................
Attachments:
Answered by ashishks1912
9

The results (i) x(1-x^2)^{\frac{1}{2}}+y(1-y^2)^{\frac{1}{2}}+z(1-z^2)^{\frac{1}{2}}=2xyz

(ii) x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z ^2+z^2x^2) is proved

Step-by-step explanation:

Given that sin^{-1}x+sin^{-1}y+sin^{-1}z=\pi

To prove that

(i)  x(1-x^2)^{\frac{1}{2}}+y(1-y^2)^{\frac{1}{2}}+z(1-z^2)^{\frac{1}{2}}=2xyz

(ii) x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)

Let sin^{-1}x=A

x=sinA

Similarly sin^{-1}y=B

y=sinB and sin^{-1}z=C

z=sinC

We have sin^{2}\theta +cos^{2}\theta=1

cosA=\sqrt{1-sin^2A}

cosA=\sqrt{1-x^2} since x=sinA

and similarly we have cosB=\sqrt{1-y^2} since y=sinB

cosC=\sqrt{1-z^2} since z=sinC

From the given

sin^{-1}x+sin^{-1}y+sin^{-1}z=\pi we have

(i) Enough to prove that sin2A+sin2B+sin2C=4sinAsinBsinC

Take LHS sin2A+sin2B+sin2C=2sin(A+B)cos(A-B)+2sinCcosC

=2sin(\pi-C)cos(A-B)+2sinCcosC

=2sinCcos(A-B)+2sinCcosC

=2sinC[cos(A-B)+cosC]

=2sinC(2sinBsinA)

=4sinAsinBsinC=RHS

sin2A+sin2B+sin2C=4sinAsinBsinC

LHS=RHS

2sinAcosA+2sinBcosB+2sinCcosC=4sinAsinBsinC

2(sinAcosA+sinBcosB+sinCcosC)=2(2sinAsinBsinC)

sinAcosA+sinBcosB+sinCcosC=2sinAsinBsinC

Therefore   x(1-x^2)^{\frac{1}{2}}+y(1-y^2)^{\frac{1}{2}}+z(1-z^2)^{\frac{1}{2}}=2xyz

(ii) A+B+C=\pi

A+B=\pi-C

Taking cos on both sides we get

cos(A+B)=cos(\pi-C)

cosAcosB-sinAsinB=-cosC  ( since cos(A+B)=cosAcosB-sinAsinB )

\sqrt{1-x^2}\sqrt{1-y^2}-xy=-\sqrt{1-z^2}

\sqrt{1-x^2}\sqrt{1-y^2}=xy-\sqrt{1-z^2}

Squaring on both sides

(\sqrt{1-x^2}\sqrt{1-y^2})^2=(xy-\sqrt{1-z^2})^2

(\sqrt{1-x^2})^2(\sqrt{1-y^2})^2=(xy)^2+(\sqrt{1-z^2})^2-2(xy)(\sqrt{1-z^2}

(1-x^2)(1-y^2)=x^2y^2+1-z^2-2xy\sqrt{1-z^2}

1-y^2-x^2+x^2y^2=x^2y^2+1-z^2-2xy\sqrt{1-z^2}

x^2+y^2-z^2-2xy\sqrt{1-z^2}=0

x^2+y^2-z^2=2xy\sqrt{1-z^2}

Squaring on both sides

(x^2+y^2-z^2)^2=(2xy\sqrt{1-z^2})^2

x^4+y^4+z^4+2x^2y^2-2y^2z^2-2z^2x^2=4x^2y^2(1-z^2)

x^4+y^4+z^4+2x^2y^2-2y^2z^2-2z^2x^2=4x^2y^2-4x^2y^2z^2

x^4+y^4+z^4+2x^2y^2-2y^2z^2-2z^2x^2-4x^2y^2+4x^2y^2z^2=0

x^4+y^4+z^4+4x^2y^2z^2=2x^2y^2+2y^2z^2+2z^2x^2

x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)

Hence proved

Similar questions