Math, asked by kad161977, 6 months ago

If sin^2 0 + sin 0 = 1, then prove that cos^2 0 + cos^4 0 = 1

Answers

Answered by AngelineSudhagar
3

Answer:

 \implies {sin}^{ \: 2}  \: \theta + sin \:  \theta \:  = 1

 \implies \: sin  \: \theta \:  = 1 -  {sin}^{2}  \:  \theta

We know that,

1- sin^2 = cos ^2

 \implies \: sin \:  \theta \:  =   {cos}^{ \: 2}  \:  \theta \: .........eq \: 1

Now, substitute ,

 \therefore  \:  {cos}^{2}  \:  \theta \:  +  {cos \: }^{4}  \:  \theta = sin \:  \theta \:  +  \:  {sin}^{2}  \:  \theta = 1

»

hope it helps.....

Answered by bson
1

Step-by-step explanation:

sin²o +sin o = 1

1= sin²o +cos²o ---A

sin²o + sin o = sin²o + cos²o

removing sin²o on both sides

sino = cos²o

squaring on both sides

sin²o = cos⁴o ----B

substitute B in A

cos²o+ cos⁴o=1

Similar questions