if sin^ 2 a + sin ^4 a =1 , then prove that cos ^2 a + cos a =1
Answers
Answered by
1
cos A+cos^2 A=1 ————(1)
cos A =1-cos^2 A
[sin^2 A=1- cos^2 A]
cos A= sin^2 A ———-(2)
Substitute value of cos A in Eqn. (1)
(sin^2 A) + (sin^2 A)^2=1
sin^2 A + sin^4 A=1 [Proved]
Answered by
1
sin^2a + sin^4a =1
sin^2a=1-(sin^4a)
sin^2a=(1-sin^2a)^2
sin^2a=(cos^2)^2 ........(1-sin^2a=cos^2a)
sin^2a=cos^4a
1-cos^2a=cos^4 ........(sin^2a=1-cos^2a)
1=cos^4a-cos^2a
Similar questions