If sin^2+sin^4=1then prove that tan^4-tan^2=1
Answers
Answered by
3
QUESTION :
If sin^2+sin^4=1then prove that tan^4-tan^2=1
ANSWER :
here
sin²A+sin⁴A=1
so
sin⁴A=1-sin²A
sin⁴A=cos²A.......1
now
LHS
=tan⁴A-tan²A
=(sin⁴A/cos⁴A) - (sin²A/cos²A)
=(cos²A/cos⁴A) - (sin²A/cos²A)
=(1/cos²A) - (sin²A/cos²A)
=(1-sin²A)cos²A
=cos²A/cos²A
=1
=RHS
hence proved
identity used
sin²A+cos²A=1
tanA=(sinA/cosA)
If sin^2+sin^4=1then prove that tan^4-tan^2=1
ANSWER :
here
sin²A+sin⁴A=1
so
sin⁴A=1-sin²A
sin⁴A=cos²A.......1
now
LHS
=tan⁴A-tan²A
=(sin⁴A/cos⁴A) - (sin²A/cos²A)
=(cos²A/cos⁴A) - (sin²A/cos²A)
=(1/cos²A) - (sin²A/cos²A)
=(1-sin²A)cos²A
=cos²A/cos²A
=1
=RHS
hence proved
identity used
sin²A+cos²A=1
tanA=(sinA/cosA)
Similar questions