Math, asked by rutuj912, 8 months ago

if sin^2 theta - 2 cos theta + 1/4 = 0 then the general value of theta is​

Answers

Answered by Stera
3

Answer

The general solution of the given equation is :

2nπ ± π/3 , n € Z

Given

The trigonometric equation is

\bullet \: \: \sf \sin^{2}\theta - 2\cos\theta + \dfrac{1}{4} = 0

To Find

  • The general value of \sf \theta

Solution

Given ,

 \sf \sin {}^{2}  \theta - 2 \cos \theta +  \dfrac{1}{4}   = 0 \\  \\   \sf\implies1  -   \cos {}^{2}  \theta - 2 \cos \theta +  \dfrac{1}{4}  = 0 \\  \\  \sf \implies4 - 4 \cos {}^{2}  \theta - 8 \cos \theta + 1 = 0 \\  \\  \sf \implies - 4 \cos {}^{2}  \theta - 8 \cos \theta + 5 = 0 \\  \\  \sf \implies4 \cos {}^{2}  \theta  + 8\cos \theta - 5 = 0 \\  \\  \sf  \sf\implies4 { \cos}^{2}  \theta  - 2 \cos \theta + 10 \cos \theta - 5 = 0 \\  \\  \sf \implies2 \cos \theta( \cos \theta - 1) + 5(2 \cos \theta - 1) = 0 \\  \\  \sf \implies( 2\cos \theta - 1)(2 \cos \theta + 5) = 0

Now we have ,

\sf\implies 2\cos\theta - 1 = 0 \: \: and \: \: implies 2\cos\theta + 5 = 0 \\\\ \sf\implies \cos\theta = \dfrac{1}{2} \: \: and \: \implies \cos\theta = \dfrac{-5}{2} (not \:  possible )

So we are taking ,

\sf\implies \cos\theta = \dfrac{1}{2} \\\\ \sf\implies \cos\theta = \cos\dfrac{\pi}{3} \\\\ \sf\implies x = 2n\pi \pm \dfrac{\pi}{3} , n \in Z

Similar questions