Math, asked by palagudiusharani, 1 month ago

if sin 2 theta=cos 3 theta then theta =?​

Answers

Answered by bommerakethan
0

Answer:

18

when sin theta= cos theta then sum of the two theta is 90 so here 2theta +3 theta=90

5 theta=90

theta=18

hope it will help you

Answered by SparklingBoy
4

  \huge\mathfrak{Given}

 \bf sin2 \theta = cos3 \theta

 \huge \mathfrak{ \text{T}o  \:  \: Find}

  \red{\large  \mathfrak{  \text{v}alue \: of \:  \bf \theta}}

 \color{magenta}\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  \: SOLUTION \:  \:  \:  \maltese }}}}

 \bf sin2\theta = cos3 \theta \\  \\  \sf2sin \theta cos \theta = 4cos {}^{3}  \theta - 3cos \theta \\  \\  \sf2sin \theta   \:  \: \cancel{cos \theta} =  \cancel{cos \theta} \:  \:  (4cos {}^{2}  \theta - 3) \\  \\  \sf 2sin \theta = 4(1 -  {sin}^{2}  \theta) - 3 \\  \\ \sf 2sin \theta = 4  - 4 {sin}^{2}  \theta - 3 \\  \\ \large \boxed{ \boxed{  \bf{4 {sin}^{2} \theta +  2sin \theta  - 1=0 }}}

 \mathfrak{ \text{T}his \:  \:  is  \:  \: a \:  \:  Quadratic \:  \:  Eq^n \:  \:  in \:  \:  sin  \theta}

 \huge \mathcal{Now}

 \sf sin \theta =   \frac{ - 2 \pm   \sqrt{4  - 4(4)( - 1)} }{8}  \:  \:  \: \\   \mathfrak{(quadratic \:  \: formula)} \\  \\  \sf sin \theta =  \frac{ - 2 \pm \sqrt{4 + 16} }{8}  \\  \\  \sf sin \theta =  \frac{ - 2 \pm \sqrt{20} }{8}   \\  \\ \green{ \large \boxed{ \boxed{ \bf sin \theta =  \frac{ \sqrt{5}  - 1}{4}}}}

  \large\mathcal{HENCE} \\  \\  \huge  \color{red}\boxed{ \boxed{  \mathfrak{\theta = 18 \degree}}}

 \color{magenta}\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  \: SHORT\:\:SOLUTION \:  \:  \:  \maltese }}}}

We Know When SinA=CosB

then A + B =90

\huge\mathfrak{\text{S}o,} \\ 2\theta +3 \theta =90\degree \\ \\5\theta=90\degree \\ \\ \theta=\dfrac{90}{5} \\ \\  \huge  \color{red}\boxed{ \boxed{  \mathfrak{\theta = 18 \degree}}}

Similar questions