Math, asked by zain5758, 3 days ago

if sin^2 theta + sin theta = 1 then find the value of tan^4 - tan^2 theta

plz give correct answer... ​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \tt{sin^{2} ( \theta) + sin (\theta) = 1}

 \sf{ \implies \: \dfrac{1}{cosec^{2} ( \theta) }+  \dfrac{1}{cosec(\theta) }= 1}

 \sf{ \implies \: 1+ cosec(\theta) = cosec^{2} ( \theta)}

 \sf{ \implies \:  cosec(\theta) = cosec^{2} ( \theta) - 1}

 \sf{ \implies \:  cosec(\theta) = cot^{2} ( \theta) }

 \sf{ \implies \:  sin(\theta) = tan^{2} ( \theta) }

So,

 \sf{ \implies \:  sin ^{2} (\theta) = tan^{4} ( \theta) }

Now,

 \sf{ \implies tan^{4} ( \theta) + tan^{2} ( \theta)  = sin ^{2} (\theta) +  sin(\theta)  = 1}

Similar questions