Math, asked by mchankeshwara411, 6 months ago

If sin 27" - p, then the value of VI + sin 36° is​

Answers

Answered by muskanhs2833816
1

Answer:

dnrhruirieiek kbbdbdjdkaoaby uxuxynwnwmksjwjejkeieowp

Step-by-step explanation:

plz .give me ans ,l

Answered by halamadrid
0

The correct answer is  \sqrt{1+sin 36}° = \sqrt{2-2p^{2} }

Given:

p= sin 27°

To Find:

\sqrt{1+sin36}° = ?

Solution:

We have been given that p= sin 27°. To find \sqrt{1+sin 36}°, we need to make use of the following trigonometric identities

1. sin(90-A)= cosA

2. sin(A-B)= sinAcosB - cosAsinB

3. cos2A= 1-2sin^{2}A

Now,

\sqrt{1+sin36}° = \sqrt{1+sin(90-54)}°

\sqrt{1+sin36}°=\sqrt{1+sin90cos54-cos90sin54} ............................from (2)

Now, sin90° = 1 and cos90° = 0. Substituting this we get

\sqrt{1+sin36}° = \sqrt{1+ cos54}° = \sqrt{1+ cos(2*27)

\sqrt{1+sin36}° = \sqrt{1+ 1-2sin^{2}A

\sqrt{1+sin36}° = \sqrt{2-2sin^{2}A

\sqrt{1+sin36}° = \sqrt{2-2p^{2}

Therefore \sqrt{1+sin36}° = \sqrt{2-2p^{2}

#SPJ2

Similar questions