If sin^2A+sin^2B+sin^2C=3 then find the value of cos^2A+cos^2B+cos^2C
Answers
Answered by
0
Answer:
A+B+C=π⇒B+C=π−A
Given, cos
2
A+cos
2
B+cos
2
C=1
⇒cos
2
A+cos
2
B=1−cos
2
C=sin
2
C
⇒−cos
2
A=cos
2
B−sin
2
C=cos(B+C).cos(B−C)=−cosA.cos(A−C)
⇒cosA(cosA−cos(B−C))=0
⇒cosA(cos(π−(B+C)−cos(B−C))=0
⇒cosA(−cos(B+C)−cos(B−C))=0
⇒cosA(2cosBcosC)=0
∴ either cosA=90
o
or cosB=90
o
or cosC=90
o
So, its a triangle with one angle =90
o
Hence, right-angled triangle
Similar questions