If sin θ +2cos θ =1, then prove that 2 sin θ -cos θ =2.
Answers
Answered by
3
sin theta + cos theta = sqrt(2)cos theta` prove `cos theta - sin theta = sqrt(2)sin theta`
`sin theta + cos theta = sqrt(2)cos theta` square both sides
`sin^2theta + cos^2 theta + 2sintheta costheta=2cos^2theta`
`sin^2theta - cos^2theta + 2sinthetacostheta=0`
`-sin^2theta + cos^2theta -2sinthetacostheta=0` Add `2sin^2theta` to both sides
`sin^2theta+cos^2theta-2sinthetacostheta=2sin^2theta`
`(costheta-sintheta)^2=2sin^2theta`
`costheta-sintheta=sqrt(2)sintheta` as required.
Given `sin theta + cos theta = sqrt(2)cos theta` prove `cos theta - sin theta = sqrt(2)sin theta`
`sin theta + cos theta = sqrt(2)cos theta` square both sides
`sin^2theta + cos^2 theta + 2sintheta costheta=2cos^2theta`
`sin^2theta - cos^2theta + 2sinthetacostheta=0`
`-sin^2theta + cos^2theta -2sinthetacostheta=0` Add `2sin^2theta` to both sides
`sin^2theta+cos^2theta-2sinthetacostheta=2sin^2theta`
`(costheta-sintheta)^2=2sin^2theta`
`costheta-sintheta=sqrt(2)sintheta` as required
`sin theta + cos theta = sqrt(2)cos theta` square both sides
`sin^2theta + cos^2 theta + 2sintheta costheta=2cos^2theta`
`sin^2theta - cos^2theta + 2sinthetacostheta=0`
`-sin^2theta + cos^2theta -2sinthetacostheta=0` Add `2sin^2theta` to both sides
`sin^2theta+cos^2theta-2sinthetacostheta=2sin^2theta`
`(costheta-sintheta)^2=2sin^2theta`
`costheta-sintheta=sqrt(2)sintheta` as required.
Given `sin theta + cos theta = sqrt(2)cos theta` prove `cos theta - sin theta = sqrt(2)sin theta`
`sin theta + cos theta = sqrt(2)cos theta` square both sides
`sin^2theta + cos^2 theta + 2sintheta costheta=2cos^2theta`
`sin^2theta - cos^2theta + 2sinthetacostheta=0`
`-sin^2theta + cos^2theta -2sinthetacostheta=0` Add `2sin^2theta` to both sides
`sin^2theta+cos^2theta-2sinthetacostheta=2sin^2theta`
`(costheta-sintheta)^2=2sin^2theta`
`costheta-sintheta=sqrt(2)sintheta` as required
madangowri:
fine
Answered by
0
hence proved.................
Similar questions