If sin θ + 2cos θ = 1 , then prove that cos θ – 2 sin θ = 2.
Answers
Answered by
1
Answer:
Step-by-step explanation:
Here is the answer
sin ϴ + 2 cos ϴ = 1
Squaring both the sides
(sin ϴ + 2 cos ϴ) ² = (1) ²
sin² ϴ + 4 cos² ϴ + 4 sin ϴ cos ϴ = 1
because sin² ϴ = 1 - cos² ϴ & cos² ϴ=1- sin² ϴ
So replacing sin² ϴ by 1 - cos² ϴ and cos² ϴ by 1- sin² ϴ
we get
1 - cos² ϴ + 4 ( 1 - sin² ϴ ) + 4sin ϴ cos ϴ = 1
1 - cos² ϴ + 4 – 4sin² ϴ + 4 sin ϴ cos ϴ = 1
5 – 1 = cos² ϴ +4sin² ϴ - 4 sin ϴ cos ϴ
or
( cos ϴ – 2 sin ϴ ) ² = 4
cos ϴ -2sin ϴ = ± 2 or simply 2 ignoring -2
nikhil6532:
meerut
Similar questions
English,
7 months ago
English,
7 months ago
India Languages,
1 year ago
Biology,
1 year ago
Math,
1 year ago