Math, asked by CryonicStrider, 1 year ago

If Sinϴ = 2x and xcosϴ = 2, 0⁰ < ϴ < 90⁰ , find the value of 2 ( x^2 + 1 / x^2 ).

Answers

Answered by rohitkumargupta
1

Answer:

2(x² + 1/x ) = 1/2

Step-by-step explanation:

Given,

sinϴ = 2x and xcosϴ = 2 , 0<ϴ<90

we hav to find,

2( + 1/)

as,

=> sinϴ = 2x , cosϴ = 2/x

on adding and squaring on both sides

=> (sinϴ + cosϴ)² = (2x + 2/x)²

=> sin²ϴ + cos²ϴ + 2sinϴcosϴ = 4x² + 4/ + 2*2x*2/x

=> (sin²ϴ + cos²ϴ) + 2sinϴcosϴ = 4x² + 4/ + 8

[ sin²ϴ + cos²ϴ = 1]

=> 1 + 2sinϴcosϴ = 4x² + 4/ + 8

=> 1 - 8 + 2sinϴcosϴ = 4( + 1/)

=> 4( + 1/) = -7 + 2sinϴcosϴ

=> 2( + 1/) = (sinϴcosϴ - 7/2)

but sinϴ = 2x & cosϴ = 2/x

sinϴcosϴ = 2x × 2/x

sinϴcosϴ = 4

2(x² + 1/x²) = 4 - 7/2

2(x² + 1/x²) = (8-7)/2

2(x² + 1/x²) = 1/2

thanks

#SPJ3

Answered by Swarup1998
3

\boxed{2(x^{2}+\dfrac{1}{x^{2}})=\dfrac{1}{2}}

Given data:

sin\theta=2x and x\:cos\theta=2, 0^{\circ}&lt;\theta&lt;90^{\circ}

To find:

The value of 2(x^{2}+\dfrac{1}{x^{2}})

Concept to be used:

Before we solve this problem, we must know

sin^{2}\theta+cos^{2}\theta=1

Step-by-step explanation:

Here, sin\theta=2x and x\:cos\theta=2

\Rightarrow sin\theta=2x and cos\theta=\dfrac{2}{x}

Also, sin^{2}\theta+cos^{2}\theta=1

\Rightarrow (2x)^{2}+(\dfrac{2}{x})^{2}=1

\Rightarrow 4x^{2}+\dfrac{4}{x^{2}}=1

\Rightarrow 4(x^{2}+\dfrac{1}{x^{2}})=1

\Rightarrow 2(x^{2}+\dfrac{1}{x^{2}})=\dfrac{1}{2}

Thus the value of 2(x^{2}+\dfrac{1}{x^{2}}) is \dfrac{1}{2}.

Read more on Brainly.in

If sin\theta=\dfrac{144}{145}, then complete the following activity to find cos\theta.

- https://brainly.in/question/37781738

If sin\theta=cosec\theta and 0&lt;\theta&lt;\pi, then the value of \theta is

- https://brainly.in/question/47310631

#SPJ3

Similar questions