If sin 2x = sin 60 cos 30° -cos 60° sin 30°, find the value of x.
Answers
Answered by
13
Answer:
Step-by-step explanation:
sin 2x = sin 60 cos 30° -cos 60° sin 30°
sin 2x = (root 3)/2 *(root 3)/2 - 1/2 * 1/2
sin 2x = 3/4 - 1/4
sin 2x=2/4
sin 2x=1/2
Since sin 30°=1/2 therefore 2x=30°
x=15°
Answered by
24
Here we use a compound angle formula:
sin (A - B) = sin A · cos B - cos A · sin B
Here we take,
A = 60°
B = 30°
Thus,
sin (60° - 30°) = sin 60° · cos 30° - cos 60° · sin 30°
Putting LHS of sin (2x) = sin 60 cos 30° -cos 60° to the RHS of this equation,
sin (60° - 30°) = sin (2x)
sin 30° = sin (2x)
From both sides,
2x = 30°
x = 15°
Hence 15° is the answer.
Similar questions