Math, asked by ramyakomara28, 1 year ago

if sin 3/5 then find cos and tan

Answers

Answered by Anonymous
14
 \sin( \alpha ) = \frac{perpendicular}{hypotenuse} \\ = \frac{AC}{AB} = \frac{3}{5} \\ hence \: bc = 4 \: by \: pythagoras \\ hence \: \cos( \alpha ) = \frac{base}{hypotenuse} \\ = \frac{4}{5} \\ tan \alpha = \frac{perpendicular}{base} = \frac{3}{4}
Attachments:

ramyakomara28: thank u
Anonymous: most welcome
Answered by abhi569
21

    According to the question


sinA = \dfrac{3}{5}


          Method : 1( By Theorem )



sinA = \dfrac{3}{5}


\dfrac{height}{hypotenuse} = \dfrac{3}{5}



Let,

      Height from angle A = 3 x

      Hypotenuse of triangle = 5 x


         By Pythagoras Theorem


Hypotenuse^2 = height^2 + base^2

( 5 x )^2 = ( 3 x )^2 + ( base )^2

25x^2 - 3x^2 = ( base )^2

16x^2 = base^2

( 4x )^2 = ( base )^2

4x = base


Therefore, cosA = \dfrac{base}{hypotenuse}


                           =\dfrac{4x}{5x}


                           = \bold{\dfrac{4}{5}}


And, tanA = \dfrac{height}{base}

     

                 = \dfrac{3x}{4x}


                 = \bold{\dfrac{3}{4}}



                Method : 2 ( Identities )


We know, sin^2 A + cos^2 A = 1


           Substituting value,


( 3 / 5 )^2 + cos^2 A = 1


cos^2 A = 1 - 9 / 25


cos^2 A = ( 25 - 9 ) / 25


cos^2 A = 16 / 25


cos^2 A = ( 4 / 5 )^2


cos A = 4 / 5


tanA = sinA / cosA

        = ( 3 / 5 ) / (  4 / 5 )

        = 3 / 4

       


ramyakomara28: thank u so much
abhi569: welcome :-)
ramyakomara28: kkkk
Similar questions