If sinα=3/5, then the value of expression tanαsinα−cosαtanαsinα−cosα may be :
Answers
Answered by
0
Answer:
-0.71 or -71/100
Explanation:
Since sin alpha = 3/5,
height = 3x and hypotenuse = 5x
From Pythagoras Theorem,
height² + base² = hypotenuse²
base² = 25x² - 9x²
base² = 16x²
ergo, base = 4x
cos alpha = base/hypotenuse = 4/5
tan alpha = height/base = 3/4
tan alpha*sin alpha - cos alpha*tan alpha* sin alpha - cos alpha
= 3/4*3/5 - 4/5*3/4*3/5 - 4/5
= 9/20 - 9/25 - 4/5
= (45-36-80) / 100
= -71 / 100 (-0.71)
Similar questions